[Total No. of Questions - 9] [Total No. of Printed Pages - 2]

Dec.-22-0210

EC-502 (Electromagnetic Field Theory) B.Tech. 5th (CBCS)

Time: 3 Hours

Max. Marks: 60

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all, selecting one question from each section A, B, C and D. Question no. 9 is compulsory.

SECTION - A

- 1. Express the vector field $\vec{A} = xy^2z\vec{a_x} + x^2yz\vec{a_y} + xyz^2\vec{a_z}$ in cylindrical and spherical coordinates at (3, -4, 5).
- 2. What is Stokes Theorem? What are its advantages and Limitations? Can Stoke's Theorem be applied to closed surfaces?

SECTION - B

- Explain Biot-Savart's Law and show that the magnetic field intensity due to an infinitely long filamentary current I along the z-axis in cylindrical coordinates, is inversely proportional to the radial distance to the field point.
- 4. Find the electric flux density and volume charge density if the electric field, $E = x^2 a_x + 2y^2 a_y + z^2 a_z \vee /m$ in a medium whose $\varepsilon_r = 2$.

SECTION - C

Derive Poynting Theorem and give interpretation of each term. (10) Derive general expression for reflection coefficient and transmission coefficient for E and H fields when a Electromagnetic wave is incident normally on the boundary separating two different perfectly dielectric medium.

SECTION - D

- 7. A transmission line is lossless and is 25m long. It is terminated in a load of Z_L = 40 + j 30Ω at a frequency of 10MHz. The inductance and capacitance of the line are L = 300nH/m and C = 40 pF/m. Find the input impedance at the source and at the mid-point of the line.
- Write a short note on Smith chart along with its applications. (10)

SECTION - E (Compulsory Question)

- Answer the following:
 - Write a short note on physical interpretation of gradient.
 - State Guass's Law in differential and Integral form.
 - Write the wave equations in a conductive medium.
 - Explain Brewster angle. (d)
 - What is distortion less transmission line? (e)
 - Explain Reflection coefficient. (f)
 - What is Quarter wave transformer? (g)
 - Explain depth of penetration. (h)
 - State Faraday's Law. (i)
 - What is the intrinsic impedance of a medium? (j)

 $(10 \times 2 = 20)$